
Information-Flow Security for Interactive Programs

Kevin R. O’Neill Michael R. Clarkson Stephen Chong
{oneill,clarkson,schong}@cs.cornell.edu

Department of Computer Science
Cornell University

Abstract. Interactive programs allow users to engage in input and output through-
out execution. The ubiquity of such programs motivates the development of mod-
els for reasoning about their information-flow security, yet no such models seem
to exist for imperative programming languages. Further, existing language-based
security conditions founded on noninteractive models permit insecure informa-
tion flows in interactive imperative programs. This paper formulates new strategy-
based information-flow security conditions for a simple imperative programming
language that includes input and output operators. The semantics of the language
enables a fine-grained approach to the resolution of nondeterministic choices. The
security conditions leverage this approach to prohibit refinement attacks while
still permitting observable nondeterminism. Extending the language with proba-
bilistic choice yields a corresponding definition of probabilistic noninterference.
A soundness theorem demonstrates the feasibility of statically enforcing the se-
curity conditions via a simple type system. These results constitute a step toward
understanding and enforcing information-flow security in real-world program-
ming languages, which include similar input and output operators.

1 Introduction

Secure programs should maintain the secrecy of confidential information. For sequen-
tial imperative programming languages, this principle has led to a variety of information-
flow security conditions which assume that all confidential information is supplied as
the initial values of a set of program variables. This assumption reflects an idealized
batch-job model of input and output, whereby all inputs are obtained (as initial values of
program variables) from users before the program begins execution, and all outputs are
provided (as final values of program variables) after program termination. Accordingly,
these security conditions aim to protect the secrecy only of initial values.

Many real-world programs are interactive, sending output to and receiving input
from their external environment throughout execution. Examples of such programs in-
clude web servers, GUI applications, and some command-line applications. The batch-

This work was supported in part by NSF under grants CTC-0208535 and 0430161, by ONR under
grant N00014-01-10-511, by the DoD Multidisciplinary University Research Initiative (MURI)
program administered by the ONR under grants N00014-01-1-0795 and N00014-04-1-0725, and
by AFOSR under grants F49620-02-1-0101 and FA9550-05-1-0055.

job model is unable to capture the behavior of interactive programs because of de-
pendencies between inputs and outputs. For example, a program implementing a chal-
lenge/response protocol must first output a challenge to the user and then accept the
user’s response as input; clearly, the user cannot supply the response as the initial
value of a program variable. In contrast, the interactive model generalizes the batch-job
model: any batch-job program can be simulated by an interactive program that reads the
initial values of all relevant variables, executes the corresponding batch-job program,
and finally outputs the values of all variables.

Given the prevalence of interactive programs, it is important to be able to reason
about their security properties. Traditionally, researchers have reasoned about informa-
tion flow in interactive systems by encoding them as state machines (e.g., Mantel [19]
and McLean [22, 23]) or as concurrent processes (e.g., Focardi and Gorrieri [6]) and ap-
plying trace-based information-flow security conditions. But since implementors usu-
ally create imperative programs, not abstract models, a need exists for tools that enable
direct reasoning about the security of such programs. This paper addresses that need
by developing a model for reasoning about the information-flow security of interactive
imperative programs. Our model achieves a clean separation of user behavior from pro-
gram code by employing user strategies, which describe how agents interact with their
environment. Strategies are closely related to processes described in a language like
CCS [24] or CSP [17]. We give novel strategy-based semantic security conditions sim-
ilar to Wittbold and Johnson’s definition of nondeducibility on strategies [38], which
ensure that confidential information cannot flow from high-confidentiality users to low-
confidentiality users. We also leverage previous work on static analysis techniques by
adapting the type system of Volpano, Smith, and Irvine [37] to an interactive setting.

Our language and security conditions synthesize two branches of information-flow
security research, in that we leverage the trace-based definitions that have been pro-
posed for interactive systems to provide novel security conditions for imperative pro-
grams. Furthermore, our interactive programming language can be viewed as a spec-
ification language for interactive systems that more closely approximates the imple-
mentation of real programs than the abstract system models that have previously been
used.

Nondeterminism arises in real-world systems for a number of reasons, including
concurrency and probabilistic randomization. It is therefore an important consideration
when reasoning about imperative programs. Nondeterminism is orthogonal to interac-
tivity, but the interplay between information flow and nondeterminism is often quite
subtle. We examine two kinds of nondeterministic choices: those which we assume are
made probabilistically, and those which we are unable or unwilling to assign probabili-
ties. We refer to the former as probabilistic choice, and to the latter as nondeterministic
choice. Following Halpern and Tuttle [15], we factor out nondeterministic choice so that
we can reason about it in isolation from probabilistic choice. By explicitly representing
the resolution of nondeterministic choice in the language semantics, we adapt our secu-
rity condition to rule out refinement attacks in which the resolution of nondeterministic
choice results in insecure information flows. Finally, we give a security condition, based
on Gray and Syverson’s definition of probabilistic noninterference [11], that rules out
probabilistic information flows in randomized interactive programs.

2

In Section 2 we develop our system model and introduce mathematical structures
for reasoning about the behavior and observations of users. We proceed to instantiate
the model on a simple language of while-programs in Section 3 and to give an opera-
tional semantics and security condition for the language. We then incorporate language
features for nondeterministic choice (Section 4) and probabilistic choice (Section 5) and
adapt our security conditions accordingly. In Section 6 we demonstrate the feasibility of
statically enforcing our security condition by presenting a sound type system. Section
7 discusses related work, and Section 8 concludes.

2 User Strategies

It might seem at first that information-flow security for interactive programs can be
obtained by adopting the same approach used for batch-job programs, that is, by pre-
venting low-confidentiality users from learning anything about high-confidentiality in-
puts. (Hereafter we use the more concise terms “high” and “low” when describing the
confidentiality level associated with inputs, users, and so on.) However, several papers,
starting with Wittbold and Johnson [38], have described systems in which high users
can transmit information to low users even though low users learn nothing about the
high inputs. This is demonstrated by Program P1 below, an insecure one-time pad im-
plementation described by Wittbold and Johnson. Command input x from C reads a
value from a channel named C and stores it in variable x; similarly, output e to C out-
puts the value of expression e on a channel named C. Assume that low users may use
only channel L, that high users may use channel H , and that no users may observe the
values of program variables. Infix operator 8 nondeterministically chooses to execute
one of its two operands.

P1 : while (true) do
x := 0 8 x := 1;
output x to H;
input y from H;
output x xor (y mod 2) to L

If nondeterminism is resolved in a way that is unpredictable to the low user, he will be
unable to determine the inputs on channelH: for any output on L, the input onH could
have been either 0 or 1. Yet the high user can still communicate an arbitrary confidential
bit z to channel L at each iteration of the loop by choosing z xor x as input on H .

The confidential information z is never directly acquired by the program: it is nei-
ther the initial value of a program variable nor an input supplied on a channel. As
Wittbold and Johnson observe, maintaining the secrecy of all high inputs (and even the
initial values of program variables) is therefore insufficient to preserve the secrecy of
confidential information.

In Program P1, the high user is able to communicate arbitrary confidential informa-
tion by selecting his next input as a function of outputs he has previously received. This
suggests that if we want to prevent confidential information from flowing to low users,
we should protect the secrecy of the function that high users employ to select inputs.
Following Wittbold and Johnson’s terminology, we call this function a user strategy. In

3

the remainder of this section we develop the mathematical structures needed to define
user strategies formally.

2.1 Types, Users, and Channels

We assume a set L of security types with ordering relation ≤ and use metavariable
τ to range over security types. For simplicity, we assume that L equals {L,H} with
L ≤ H . (Our results generalize to partial orders of security types.) Security type L
represents low confidentiality, and H represents high confidentiality. The ordering ≤
indicates the relative restrictiveness of security types: high-confidentiality information
is more restricted in its use than low-confidentiality information.

Users are agents (including humans and programs) that interact with executing pro-
grams. We associate with each user a security type indicating the highest level of con-
fidential information that the user is permitted to read. Conservatively, we assume that
users of the same security type may collaborate while attempting to subvert the security
of a program. We can thus simplify our security analyses by reasoning about exactly two
users, one representing the pooled knowledge of low users and another representing the
pooled knowledge of high users.

We also assume the existence of channels with blocking input and nonblocking out-
put. Although input is blocking, we assume that all inputs prompted for are eventually
supplied. Each channel is associated with a security type τ , and only users of that type
are permitted to use the channel. For simplicity, we assume that there are exactly two
channels, L and H . We also assume that the values that are input and output on chan-
nels are integers. These are not fundamental restrictions; our results could be extended
to allow multiple channels of each type, to allow high users to observe low channels,
and to allow more general data types.

2.2 Traces

An event is the transmission of an input or output on a channel. Denote the input of
value v on the channel of type τ as in(τ, v) and the output of v on τ as out(τ, v). Let
Ev(τ) be the set of all events that could occur on channel τ :

Ev(τ) ,
⋃
v∈Z

{in(τ, v), out(τ, v)}.

Let Ev be the set of all events:

Ev ,
⋃
τ∈L

Ev(τ).

We use metavariable α to range over events in Ev.
A trace is a finite list of events. Given E ⊆ Ev, an event trace on E is a finite,

possibly empty list 〈α1, . . . , αn〉 such that αi ∈ E for all i. The empty trace is writ-
ten 〈〉. The set of all traces on E is denoted Tr(E), and we abbreviate the set of all
traces Tr(Ev) as Tr. Trace equality is defined pointwise, and the concatenation of two
traces t and t′ is denoted tˆt′. A trace t′ extends trace t if there exists a trace t′′ such that

4

t′ = tˆt′′. The restriction of t to E, denoted t�E, is the trace that results from removing
all events not contained in E from t. We write t � τ as shorthand for t � Ev(τ). A low
trace is the low restriction t�L of a trace t.

2.3 User Strategies

As demonstrated by Program P1, the input supplied by a user may depend on past events
observed by that user. To capture this dependence we employ a user strategy, which
determines the input for a particular channel as a function of the events that occur on
the channel. Because events on a channel include both inputs and outputs, this function
depends on both the user’s observations and previous actions. Formally, a user strategy
for a channel with security type τ is a function of type Tr(Ev(τ)) → Z. Let UserStrat
be the set of all user strategies. (Note that, to simulate the batch-job model, the initial
inputs provided by users can be represented by a constant strategy that selects inputs
without regard for past inputs or outputs. Also, high user strategies can be extended to
depend on observation of the low channel, as described at the end of Section 3.)

As an example, we present a strategy that a high user could employ to transmit an
arbitrary stream of bits z1z2 . . . to the low user in Program P1. This user strategy, g,
ensures that if b was the previous output on H , then the next input on H is the bitwise
exclusive-or of b and zi. Note that every second event on channel H is an input event
in(H, v).

g(〈α1, . . . , αn〉) =

 zi xor b if αn = out(H, b)
and n = 2i− 1

0 otherwise

A joint strategy is a collection of user strategies, one for each channel. Formally, a
joint strategy ω is a function of type L → UserStrat, that is, a function from security
types to user strategies. Let Strat be the set of all joint strategies.

3 Noninterference for Interactive Programs

While-programs, extended with commands for input and output, constitute our core
interactive programming language. The syntax of this language is:

(expressions) e ::= n | x | e0 ⊕ e1
(commands) c ::= skip | x := e | c0; c1 |

input x from τ | output e to τ |
if e then c0 else c1 | while e do c

Metavariable x ranges over Var, the set of all program variables. Variables take values
in Z, the set of integers. Literal values n also range over integers. Binary operator ⊕
denotes any total binary operation on the integers.

3.1 Operational Semantics

The execution of a program modifies the values of variables and produces events on
channels. A state determines the values of variables. Formally, a state is a function

5

(ASSIGN)

(x := e, σ, t, ω) −→ (skip, σ[x := σ(e)], t, ω)

(SEQ-1)

(skip; c, σ, t, ω) −→ (c, σ, t, ω)

(SEQ-2)
(c0, σ, t, ω) −→ (c′0, σ

′, t′, ω)

(c0; c1, σ, t, ω) −→ (c′0; c1, σ
′, t′, ω)

(IN)
ω(τ)(t�τ) = v

(input x from τ, σ, t, ω) −→ (skip, σ[x := v], tˆ〈in(τ, v)〉, ω)

(OUT)
σ(e) = v

(output e to τ, σ, t, ω) −→ (skip, σ, tˆ〈out(τ, v)〉, ω)

(IF-1)
σ(e) 6= 0

(if e then c0 else c1, σ, t, ω) −→ (c0, σ, t, ω)

(IF-2)
σ(e) = 0

(if e then c0 else c1, σ, t, ω) −→ (c1, σ, t, ω)

(WHILE)

(while e do c, σ, t, ω) −→ (if e then (c; while e do c) else skip, σ, t, ω)

Fig. 1. Operational semantics

of type Var → Z. Let σ range over states. A configuration is a 4-tuple (c, σ, t, ω)
representing a system about to execute c with state σ and joint strategy ω. Trace t is
the history of events produced by the system so far. Let m range over configurations.
Terminal configurations, which have no commands remaining to execute, have the form
(skip, σ, t, ω).

The operational semantics for our language is a small-step relation −→ on configu-
rations. Membership in the relation is denoted

(c, σ, t, ω) −→ (c′, σ′, t′, ω),

meaning that execution of command c can take a single step to command c′, while
updating the state from σ to σ′. Trace t′ extends t with any events that were produced
during the step. Note that joint strategy ω is unchanged when a configuration takes a
step; we include it in the configuration only to simplify notation and presentation.

The inductive rules defining relation −→ are given in Figure 1. The rules for com-
mands other than input and output are all standard. In Rule ASSIGN, σ(e) denotes the
value of expression e in state σ, and state update σ[x := v] changes the value of vari-
able x to v in σ. Rule IN uses the joint strategy ω to determine the next input event and

6

appends it to the current trace, and rule OUT simply appends the output event to the
current trace.

Let −→∗ be the reflexive transitive closure of −→. Intuitively, if

(c, σ, t, ω) −→∗ (c′, σ′, t′, ω),

then configuration (c, σ, t, ω) can reach configuration (c′, σ′, t′, ω) in zero or more
steps. Configuration m emits t, denoted m t, when there exists a configuration
(c, σ, t, ω) such that m −→∗ (c, σ, t, ω). Note that emitted events may include both
inputs and outputs.

3.2 A Strategy-Based Security Condition

We now develop a security condition which ensures that users with access only to chan-
nel L do not learn anything about the strategies employed by users interacting with
channel H . Since strategies encode the possible actions that users may take as they in-
teract with the system, protecting the secrecy of high strategies ensures that the actions
taken by high users cannot affect (or “interfere with”) the observations of low users.
The security condition can be seen as an instance of nondeducibility on strategies as
defined by Wittbold and Johnson [38] or as an instance of definitions of secrecy given
by Halpern and O’Neill [13, 14].

Informally, a program is secure if, for every initial state σ, any trace of events seen
on channel L is consistent with every possible user strategy for channelH . This ensures
that low users cannot learn any information, including inputs, that high users attempt to
convey—even if low users know the program text.

Definition 1 (Noninterference). A command c satisfies noninterference exactly when:

For all m = (c, σ, 〈〉, ω) and m′ = (c, σ, 〈〉, ω′)
such that ω(L) = ω′(L),

and for all t such that m t,
there exists a t′ such that t�L = t′ �L and m′ t′.

According to this condition, the high strategy ω(H) in m can be replaced by any
other high strategy without affecting the low traces emitted. Although the condition
assumes that programs begin with an empty trace of prior events, it can be generalized
to account for arbitrary traces. (See Appendix A.) Some additional implications of this
security condition are discussed below.

Initial variable values. The security condition does not protect the secrecy of the initial
values of variables. More concretely, the program output x to L is considered secure
for any x ∈ Var, whereas the program input x from H; output x to L is obviously
considered insecure. The definition thus reflects our intuition that high users interact
with the system only via input and output events on the high channel and have no
control over the initialization of variables. Systems in which the high user controls the
initial values of some or all variables can be modeled by prepending commands that
read inputs from the high user and assign them to variables.

7

Variable typings. It is not necessary to assign security types to program variables in
order to determine whether a program is secure. (A program with no high inputs, for
example, is secure regardless of its variables or their types.) Accordingly, our security
condition makes no reference to the security types of variables. This distinguishes our
work from most batch-job conditions, where variable typings are fundamental. We do,
however, employ variable typings for the static analysis technique presented in Sec-
tion 6.

Timing sensitivity. Our observational model is asynchronous: users do not observe
the time when events occur or the time that passes while a program is blocking on an
input command. The security condition is thus timing-insensitive. We could incorporate
timing sensitivity into the model by assuming that users observe a “tick” event at each
execution step or by tagging events with the time at which they occur; strategies could
then make use of this additional temporal information.

Termination sensitivity. We make the standard assumption that users are unable to
observe the nontermination of a program. Nonetheless, our security condition is termi-
nation-sensitive when low events follow commands that may not terminate. Consider
the following program:

P2 : input x from H;
if (x = 0) then {while (true) do skip} else skip;
output 1 to L

A high user can cause this program to transmit the value 1 to a low user. Since this
would allow the low user to infer something about the high strategy, this program is
insecure according to our security condition.

We do not assume that users are able to observe the termination of a program di-
rectly, but it would be easy to make termination observable by adding a distinguished
termination event that is broadcast on all channels when execution reaches a terminal
configuration.

Observation of channels. We have assumed that high users cannot observe the low
channel, but this restriction can be removed in several ways. For example, it is straight-
forward to amend the operational semantics to echo low events to high channels by
adding an additional high output event (prepended with a label to distinguish it from a
regular high output events) to the trace every time a low input or output event occurs.

4 Nondeterministic Programs

We distinguish two kinds of nondeterminism that appear in programs: probabilistic
choice and nondeterministic choice. Intuitively, probabilistic choice represents explicit
use of randomization, whereas nondeterministic choice represents program behavior
that is underspecified (perhaps due to unpredictable factors such as the scheduler in a
concurrent setting). Following the approach of previous work [15, 35], we factor out the
latter kind of nondeterminism by assuming that all nondeterministic choices are made
as if they were specified before the program began execution. (The implications of this

8

approach are discussed at the end of the section.) This allows reasoning about nonde-
terministic choice and probabilistic choice in isolation, and our definitions of noninter-
ference reflect the resulting separation of concerns. In this section we extend our model
to include nondeterministic choice. We return to probabilistic choice in Section 5.

4.1 Refiners

We extend the language of Section 3 with nondeterministic choice:

c ::= . . . | c0 8τ c1

Each nondeterministic choice is annotated with a security type τ that is used in the oper-
ational semantics. The need for the annotation is explained below; we remark, however,
that the type system described in Section 6 could be used to infer annotations automat-
ically, so that programmers need not specify them.

To factor out the resolution of nondeterminism, we introduce infinite lists of binary
values called refinement lists. Denote the set of all such refinement lists as RefList.
Informally, when a nondeterministic choice is encountered during execution, the head
element of a refinement list is removed and used to resolve the choice. The program
executes the left command of the nondeterministic choice if the element is 0 and the
right command if the element is 1. Refinement lists are an operational analog of Milner’s
oracle domains [25] for denotational semantics.

Nondeterministic choices should not cause insecure information flows, even if low
users can predict how the choices will be made. While it might seem that using a single
refinement list would suffice to ensure that no insecure information flows arise as a
result of the resolution of nondeterministic choice, the following program demonstrates
that this is not the case:

input x from H;
if (x = 0) then {skip 8H skip} else skip;
output 0 to L 8L output 1 to L

If the refinement list 〈1, 0, . . .〉 is used to execute this program, the output on channel
L will equal the input on channel H . An insecure information flow arises because the
same refinement list is used to make both low and high choices. To eliminate this flow,
we identify the security type of a choice based on its annotation and require that dif-
ferent lists be used to resolve choices at each type. This ensures that the number of
choices made at a given security level cannot become a covert channel. (Note that this
requirement lends itself to natural implementation techniques. For example, if choices
are made by using a stream of pseudorandom numbers, then different streams should
be used to resolve high and low choices. Or if 8 represents scheduler choices, then the
scheduler should resolve choices at each security type independently.)

A refiner is a function ψ : L → RefList that associates a refinement list with each
security type. Let Ref denote the set of all refiners. Denote the standard list operations
of reading the first element of a list and removing the first element of a list as head and
tail , respectively. Given a refiner ψ, the value head(ψ(τ)) is used to resolve the next
choice annotated with type τ .

9

(SEQ-2)
(c0, σ, ψ, t, ω) −→ (c′0, σ

′, ψ′, t′, ω)

(c0; c1, σ, ψ, t, ω) −→ (c′0; c1, σ
′, ψ′, t′, ω)

(CHOICE)
head(ψ(τ)) = i

(c0 8τ c1, σ, ψ, t, ω) −→ (ci, σ, ψ[τ := tail(ψ(τ))], t, ω)

Fig. 2. Operational semantics for nondeterministic choice

4.2 Operational Semantics

Using refiners, we extend the operational semantics of Section 3 to account for nonde-
terministic choice. A command c is now executed with respect to a refiner ψ, in addition
to a state σ, trace t, and joint strategy ω. We thus modify configurations to be 5-tuples
(c, σ, ψ, t, ω); terminal configurations now have the form (skip, σ, ψ, t, ω).

All of the operational rules from Figure 1 are adapted in the obvious way to han-
dle the new configurations. The only interesting change is SEQ-2, which is restated in
Figure 2. Nondeterministic choice is evaluated by the new rule CHOICE, which uses
refiner ψ to resolve the choice and specifies how the refiner changes as a result. Refiner
ψ[τ := tail(ψ(τ))] is the refiner ψ with the refinement list for τ replaced by tail(ψ(τ)).

Note that a refiner factors out all nondeterminism in the program: once a refiner,
state, and joint strategy have been fixed, execution is completely determined.

4.3 A Security Condition for Nondeterministic Programs

A well-known problem arises with nondeterministic programs: they are vulnerable to
refinement attacks, in which a seemingly secure program can be refined to an insecure
program. For example, whether the input fromH is kept secret in the following program
depends on how the nondeterministic choice is resolved:

P3 : input x from H;
output 0 to L 8 output 1 to L

If the choice is made independently of the current state of the program, say by tossing
a coin, the program is secure. But if the choice is made as a function of x, the program
may leak information about the high input.

To ensure that a program is resistant to refinement attacks, we insist that, for all
possible resolutions of nondeterminism, the program does not leak any confidential
information. Our model allows this quantification to be expressed cleanly, since refiners
encapsulate the resolution of nondeterministic choice. We adapt the security condition
of Section 3.2 to ensure that, for any refinement of the program, users with access only
to channel L do not learn anything about the strategies employed by users of channelH .

10

Definition 2 (Noninterference Under Refinement). A command c satisfies noninter-
ference under refinement exactly when:

For all m = (c, σ, ψ, 〈〉, ω) and m′ = (c, σ, ψ, 〈〉, ω′)
such that ω(L) = ω′(L),

and for all t such that m t,
there exists a t′ such that t�L = t′ �L and m′ t′.

Some implications of this definition are discussed below.

Low-observable nondeterminism. This security condition rules out refinement attacks
but allows programs that appear nondeterministic to a low user. For example, Program
P3 (with 8 replaced by 8L) satisfies noninterference under refinement, yet repeated
executions may reveal different program behavior to the low user.

Initial refinement lists. The security condition does not require the secrecy of the initial
refinement list for H . More concretely, the program

output 0 to L 8H output 1 to L

is considered secure even though it reveals information about the first value of ψ(H).
The definition thus reflects our intuition that high users interact with the system only
via input and output events on the high channel, which gives them no control over
refinement lists. The definition of noninterference under refinement could be adapted to
systems where high users may exert control over refinement lists.

Expressivity of refiners. Our model can represent only those refinements that appear
as if they were made before the program began execution. Refinements that may depend
upon dynamic factors, such as the values of variables or the current program counter,
cannot be represented. Our model therefore captures compiler-time nondeterminism but
not runtime nondeterminism [16]. We leave development of more sophisticated refiners
as future work.

5 Probabilistic Programs

Probabilistic choice can be seen as refinement of arbitrary nondeterministic choice.
Now that we have shown how refiners can be used to factor out the nondeterministic
choices to which we are unable or unwilling to assign probabilities, we can model
probabilistic choice explicitly.

We begin by extending the nondeterministic language of Section 4 with probabilistic
choice:

c ::= . . . | c0 p8 c1

Informally, probabilistic choice c0 p8 c1 executes command c0 with probability p and
command c1 with probability 1−p. The probability annotation pmust be a real number
such that 0 ≤ p ≤ 1. We assume that probabilistic choices are made independently of
one another.

11

(PROB-1)

(c0 p8 c1, σ, ψ, t, ω)
p−→ (c0, σ, ψ, t, ω)

(PROB-2)

(c0 p8 c1, σ, ψ, t, ω)
1−p−→ (c1, σ, ψ, t, ω)

Fig. 3. Operational semantics for probabilistic choice

5.1 Operational Semantics

To incorporate probability in the operational semantics we extend the small-step relation
−→ of previous sections to include a label for probability. We denote membership in
the new relation by

m
p−→ m′,

meaning that configuration m steps with probability p to configuration m′. Configu-
rations remain unchanged from the nondeterministic language of Section 4. The new
operational rules defining this relation are given in Figure 3. To facilitate backwards-
compatibility with the operational rules of previous sections, we interpret m −→ m′ as
shorthand form 1−→ m′. The operational rules previously given in Figures 1 and 2 thus
remain unchanged.

5.2 A Probabilistic Security Condition

It is well-known that probabilistic programs may be secure with respect to nonproba-
bilistic definitions of noninterference but leak confidential information with high prob-
ability. As an example, consider the following program:

P4 : input x from H;
if xmod 2 = 0 then

output 0 to L 0.998 output 1 to L
else

output 0 to L 0.018 output 1 to L

If we regard probabilistic choice p8 as identical to nondeterministic choice 8L, then
this program satisfies noninterference under refinement. Yet with high probability, the
program leaks the parity of the high input to channel L.

Toward preventing such probabilistic information flows, observe that if a low trace
t is likely to be emitted with one high user strategy and unlikely with another, then the
low user learns something about the high strategy by observing the occurrence of t. We
thus conclude that our security condition should require that the probability with which
low traces are emitted be independent of the strategy employed on the high channel,
that is, that low-equivalent configurations should produce particular low traces with the
same probability. This intuition is consistent with security conditions given by Gray and
Syverson [11] and Halpern and O’Neill [14].

More formally, let Em(t) represent the event that configuration m emits low trace
t. Suppose that we had a probability µm on such events. Then our security condition

12

should require, for all configurations m and m′ that are equivalent except for the choice
of high strategy, and all low traces t, that µm(Em(t)) = µm′(Em′(t)). The remainder
of this section is devoted to defining µm and Em(t).

We begin with two additional intuitions. First, since probabilistic choices are made
independently, the probability of an execution sequence

m0
p0−→ m1

p1−→ . . .
pn−1−→ mn

is equal to the product of the probabilities pi of the individual steps. Second, a config-
uration m could emit the same trace t along multiple sequences, so the probability that
m emits t should be the sum of the probabilities associated with those sequences.

Based on these intuitions, we now construct probability measure µm by adapting a
standard approach for reasoning about probabilities on trees [12]. For any configuration
m, relation

p−→ gives rise to a rooted directed probability tree whose vertices are labeled
with configurations, edges are labeled with probabilities, and root is m. Denote the
probability tree for m by Tm and the set of vertices of Tm by Vm. A path in the tree is a
sequence of vertices, starting with the root, where each successive pair of vertices is an
edge. Given a vertex v, let tr(v) be the trace of events in the configuration with which v
is labeled. We say that t appears at v when tr(v) = t but tr(v′) 6= t for all ancestors v′

of v. Let ap(t) be the set of vertices where t appears. In accordance with the intuitions
described above, let π(v) be the product of the probabilities on the path to v.

A ray is an infinite path or a finite path whose terminal node has no descendants,
Rays therefore represent maximal execution sequences. Let Rm denote the set of rays
of Tm. Let Rm(v) be the set of rays that go through vertex v:

Rm(v) , {r ∈ Rm | v is on r}.

Let Am be the σ-algebra on Rm generated by sets of rays going through particular
vertices, that is, by the set {Rm(v) | v ∈ Vm}.1 The following result yields a probability
measure on sets of rays. It is a consequence of elementary results in probability theory,
and we omit the proof.

Theorem 1. For any configuration m, there exists a unique probability measure µm on
Am such that for all v ∈ Vm we have µm(Rm(v)) = π(v).

Now that we have constructed µm, we must show how to use it to obtain the prob-
ability of a set of traces in terms of the probability of a corresponding set of rays. For
a set T of traces, let Rm(T) be the set of rays on which a trace in T appears. Let
emm(T) = {t ∈ T | m t} be the set of traces in T emitted by m, and note that

Rm(T) ,
⋃

t∈emm(T)

⋃
v∈ap(t)

Rm(v),

1 A σ-algebra on a set X is a nonempty collection of subsets of X that contains X and is closed
under complements and countable unions [2]. (The σ has no connection to states, although
we also use σ as a metavariable that ranges over states.) A σ-algebra generated by a set C of
subsets of X is defined as the intersection of all σ-algebras on X , including 2X , that contain
C.

13

because a trace appears on a ray r if and only if it appears at a vertex v on r. The set
Rm(T) is measurable with respect to Am because both emm(T) and Vm are countable
sets. Given a trace t, the set {Rm(v) | v ∈ ap(t)} is a partition of the set of rays on
which t appears. It follows that

µm(Rm({t})) = µm(
⋃

v∈ap(t)Rm(v))
=

∑
v∈ap(t) µm(Rm(v))

=
∑

v∈ap(t) π(v),

that is, that the probability that m emits t is equal to the sum of the values π(v) for
vertices v where t appears, as desired.

We can now define Em(t). Given a security type τ and a trace t, let [t]τ be the
equivalence class of traces that are equal to t when restricted to τ :

[t]τ , {t′ ∈ Tr | t′ �τ = t�τ}.

Finally, let Em(t) be the set of rays on which there is some vertex v such that tr(v) �
L = t�L:

Em(t) , Rm([t]L).

The set Em(t) is in Am. By Theorem 1, µm(Em(t)) is equal to the sum of values π(v)
for vertices v such that tr(v)�L = t�L and tr(v′)�L 6= t�L for any ancestor v′ of v.

We are now ready to formalize our security condition.

Definition 3 (Probabilistic Noninterference). A command c satisfies probabilistic non-
interference exactly when:

For all m = (c, σ, ψ, 〈〉, ω) and m′ = (c, σ, ψ, 〈〉, ω′)
such that ω(L) = ω′(L),

and for all t ∈ Tr(Ev(L)),
we have µm(Em(t)) = µm′(Em′(t)).

Returning to Program P4 at the start of this section, it is easy to check that the
probability of the low trace 〈out(L, 0)〉 is 0.99 when the high strategy is to input an
even number, and 0.01 when the high strategy is to input an odd number. Clearly, the
program does not satisfy probabilistic noninterference.

If we interpret the nondeterministic choice in Program P1 as 0.58 (a fair coin toss),
the program does not satisfy probabilistic noninterference. However, if the output to H
is removed, the resulting program

while (true) do
x := 0 0.58 x := 1;
input y from H;
output x xor (y mod 2) to L

does satisfy noninterference. The probability of low outputs is independent of the high
strategy, which can no longer exploit knowledge of the value of one-time pad x.

User strategies as defined thus far are deterministic. However, our approach to rea-
soning about probability applies to randomized user strategies as well as to randomized
programs, so it would be straightforward to adapt our model to handle randomized
strategies.

14

6 A Sound Type System

The problem of characterizing programs that satisfy noninterference is, for many defini-
tions of noninterference, intractable. For definitions appearing in the previous sections,
there is a straightforward reduction from the halting problem to the noninterference
problem. It follows that no decision procedure for certifying the information-flow se-
curity of programs can be both sound and complete with respect to our definitions of
noninterference. The goal of this section is to demonstrate that static analysis techniques
can be used to identify secure programs.

We use a type system based on that of Volpano, Smith, and Irvine [37]. It is interest-
ing to note that a type-system designed to enforce batch-job noninterference conditions
also enforces our interactive conditions, including probabilistic noninterference, even
though the type system is oblivious to the subtleties of probability, interactivity, and
user strategies. We believe that other type systems for information flow (e.g., [3, 18,
32, 34]) can also be easily adapted for our interactive model, and thus that advances in
precision and expressiveness can be applied to our work.

The type system consists of a set of axioms and inference rules for deriving typing
judgments of the form Γ ` p : κ, meaning that phrase p has phrase type κ under
variable typing Γ. A phrase is either an expression or a command. A phrase type is
either a security type τ or a command type τ cmd, where τ ∈ L. A variable typing
is a function Γ : Var → L mapping from variables to security types. Informally, a
command c has type τ cmd when τ is a lower-bound on the effects that cmay have, that
is, when the types (under Γ) of any variables that c updates are bounded below by τ ,
and any input or output that c performs is on channels whose security type is bounded
below by τ .

Axioms and inference rules for the type system are given in Figure 4. There are
two types of rules: typing rules (prefixed with “T”) and subtyping rules (prefixed with
“ST”). Typing rules can be used to infer the type of an expression or command directly.
Subtyping rules allow a low-typed expression to be treated as a high-typed expression
and a high-typed command to be treated as a low-typed command. (It is safe, for exam-
ple, to store a low-typed expression in a high variable, or to output data to a high user
in the body of a loop with a low-typed guard.)

Most of the rules in this type system are standard. Rules T-IN and T-OUT are both
similar to T-ASSIGN: T-IN ensures that values read from the τ channel are stored in
variables whose type is bounded below by τ , whereas T-OUT ensures that only τ -typed
expressions are output on the τ channel. Rules T-CHOICE and T-PROB are similar to T-
SEQ, except that T-CHOICE also checks that the typing is consistent with the syntactic
type annotation. Rule T-WHILE forbids high-guarded loops, ensuring that loop termi-
nation does not depend on the high user’s strategy. This prohibits insecure programs
such as P2 (in Section 3.2). We believe this rule could be relaxed using techniques
described by Boudol and Castellani [3] and Smith [34].

The following theorem states that this type system soundly enforces noninterfer-
ence. Recall that our security conditions do not depend on the security types of vari-

15

(T-LIT)

Γ ` n : τ

(T-VAR)
Γ(x) = τ

Γ ` x : τ

(T-OP)
Γ ` e0 : τ Γ ` e1 : τ

Γ ` e0 ⊕ e1 : τ

(T-ASSIGN)
Γ(x) = τ Γ ` e : τ

Γ ` x := e : τ cmd
(T-SKIP)

Γ ` skip : τ cmd

(T-IF)
Γ ` e : τ Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` if e then c0 else c1 : τ cmd
(T-SEQ)
Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0; c1 : τ cmd

(T-WHILE)
Γ ` e : L Γ ` c : τ cmd

Γ ` while e do c : L cmd

(T-CHOICE)
Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0 8τ c1 : τ cmd
(T-PROB)
Γ ` c0 : τ cmd Γ ` c1 : τ cmd

Γ ` c0 p8 c1 : τ cmd

(T-IN)
Γ(x) = τ ′ τ ≤ τ ′

Γ ` input x from τ : τ cmd

(T-OUT)
Γ ` e : τ

Γ ` output e to τ : τ cmd
(T-SUBTYPE)
Γ ` p : κ0 κ0 ≤ κ1

Γ ` p : κ1

(ST-BASE)

L ≤ H

(ST-REFL)

κ ≤ κ

(ST-CMD)
τ0 ≤ τ1

τ1 cmd ≤ τ0 cmd

Fig. 4. Typing rules

16

ables. Noninterference is enforced provided there exists some variable typing under
which the program is well-typed.2 The proof is in Appendix A.

Theorem 2 (Soundness). For any command c, if there exists a variable typing Γ and a
security type τ such that Γ ` c : τ cmd, then

(a) if c does not contain nondeterministic or probabilistic choice, then c satisfies non-
interference;

(b) if c does not contain probabilistic choice, then c satisfies noninterference under
refinement; and

(c) c satisfies probabilistic noninterference.

7 Related Work

Definitions of information-flow security for imperative programs began with the work
of Denning [5]. Many subsequent papers define information-flow security for vari-
ous sequential imperative languages, but nearly all of these papers assume a batch-job
model of computation. Therefore, they attempt to ensure the secrecy of high-typed pro-
gram variables rather than of the behavior of high users who interact with the system.
See Sabelfeld and Myers [30] for a survey of language-based information-flow security.

Another line of work considers end-to-end information-flow restrictions for non-
deterministic systems that provide input and output functionality for users. Definitions
of noninterference exist both for abstract systems (such as finite state machines) that
include input and output operations (Goguen and Meseguer [10], McCullough [21],
McLean [23], Mantel [19]), and for systems described using process algebras such
as CCS, the π-calculus, and related formalisms (Focardi and Gorrieri [6], Ryan and
Schneider [28], Zdancewic and Myers [39]).

Definitions of noninterference based on process algebras typically require that the
observations made by a public user are the same regardless of which high processes (if
any) are interacting with the system. These definitions are thus similar in spirit to our
definitions of noninterference. Indeed, there is a close connection between strategies
and processes: both can be viewed as description of how an agent will behave in an
interactive setting. A formal comparison with process-based definitions (such as [8])
may uncover further connections between process-based system models and imperative
programs.

Wittbold and Johnson [38] give the first strategy-based definition of information-
flow security, and Gray and Syverson [11] give a strategy-based definition of proba-
bilistic noninterference. Halpern and O’Neill [14] generalize the definitions of Gray
and Syverson to account for richer system models and more general notions of uncer-
tainty. Our definitions of noninterference, which are instances of Halpern and O’Neill’s
definitions of secrecy, are the first strategy-based security conditions for an imperative
programming language of which we are aware. Our work can thus be viewed as a uni-
fication of two distinct strands of the information-flow literature. In this sense our work

2 Because the security types of variables can be inferred, programmers need not specify them.
In a (trivially secure) program with no high inputs, for example, all variables can be assigned
type L.

17

is similar to that of Mantel and Sabelfeld [20], who demonstrate a connection between
security predicates taken from the MAKS framework of Mantel [19] and bisimulation-
based definitions of security for a concurrent imperative language due to Sabelfeld and
Sands [31]. However, Mantel and Sabelfeld do not consider interactive programs.

Our probabilistic noninterference condition can be interpreted as precluding pro-
grams that allow low users to make observations that improve the accuracy of their be-
liefs about high behavior, that is, their beliefs about which high strategy is used. Halpern
and O’Neill [14] prove a result which implies that our probabilistic security condition
suffices to ensure that low users cannot improve the accuracy of their subjective beliefs
about high behavior by interacting with a program. Our probabilistic security condition
also ensures that the quantity of information flow due to a secure program is exactly
zero bits in the belief-based quantitative information-flow model of Clarkson, Myers,
and Schneider [4].

The bisimulation-based security condition of Sabelfeld and Sands [31] can be viewed
as a relaxation of the batch-job model. However, as Mantel and Sabelfeld [20] point
out, bisimulation-based definitions are difficult to relate to trace-based conditions when
a nondeterministic choice operator is present in the language. The following program,
for example, satisfies both noninterference under refinement and probabilistic noninter-
ference (for suitable interpretations of the 8 operator), but it is not secure with respect
to a bisimulation-based definition of security:

input x from H;
if (x = 0)

output 0 to L;
{output 1 to L 8 output 2 to L}

else
{output 0 to L; output 1 to L} 8
{output 0 to L; output 2 to L}

Bisimulation-based security conditions implicitly assume that users can observe inter-
nal choices made by a program. When users observe only inputs and outputs on chan-
nels, our observational model is more appropriate.

Interactivity between users and a program is similar to message-passing between
threads. Sabelfeld and Mantel [29] present a multi-threaded imperative language with
explicit send, blocking receive, and non-blocking receive operators for communication
between processes. They describe a bisimulation-based security condition and a type
system to enforce it. However, it is not clear how to model user behavior in their set-
ting. Users cannot be modeled as processes since user behavior is unknown, and their
security condition applies only if the entire program is known.

Almeida Matos, Boudol, and Castellani [1] state a bisimulation-based security con-
dition for reactive programs, which allow limited communication between processes,
and they give a sound type system to enforce the condition. In their language, programs
react to the presence and absence of named broadcast signals and can emit signals to
other programs in a “local area.” It is possible to implement our higher-level channels
and events within a local area, using their lower-level reactivity operators. However, it
is unclear how to use reactivity to model interactions with unknown users who are not
part of a local area.

18

Focardi and Rossi [7] study the security of processes in dynamic contexts where the
environment, including high processes, can change throughout execution. This is simi-
lar to how high user strategies describe changing inputs throughout execution. However,
user strategies depend upon the history of the computation, whereas dynamic contexts
do not, so it is unclear how to encode a user strategy using dynamic contexts.

Previous work dealing with the susceptibility of possibilistic noninterference to
refinement attacks takes one of two approaches to specifying how nondeterministic
choice is resolved. One approach is to assume that choices are made according to fixed
probability distributions, as we do in Section 5. Volpano and Smith [36], for exam-
ple, describe a scheduler for a multithreaded language that chooses threads to execute
according to a uniform probability distribution. A second approach is to insist that pro-
grams be observationally deterministic for low users. McLean [22] and Roscoe [27]
both advocate observational determinism as an appropriate security condition for non-
deterministic systems, and Zdancewic and Myers [39] give a security condition based
on observational determinism for a concurrent language based on the join calculus [9].

Observational determinism implies noninterference under refinement and thus im-
munity to refinement attacks. In settings where the resolution of nondeterministic choice
may depend on confidential information, we conjecture that observational determinism
and noninterference under refinement are equivalent. However, when the resolution of
some choices is independent of confidential information, observational determinism is
a stronger condition: any program that is observationally deterministic satisfies nonin-
terference under refinement, but the converse does not hold.

8 Conclusion

This paper examines information flow in a simple imperative language that includes
primitives for communication with program users. In this setting, it is not the initial
values of variables or the inputs from high users that must be kept secret, but rather
the high users’ strategies. We present a trace-based noninterference condition which
ensures that low users do not learn anything about the strategies employed by high
users. Incorporating nondeterministic and probabilistic choice in the language leads to
corresponding security conditions: noninterference under refinement and probabilistic
noninterference. We prove that a type system conservatively enforces these security
conditions.

This work is a step toward understanding and enforcing information-flow security
in real-world programs. Many programs interact with users, and the behavior of these
users will often be dependent on previous inputs and outputs. Also, many programs,
especially servers, are intended to run indefinitely rather than to perform some com-
putation and then halt. Our model of interactivity is thus more suitable for analyzing
real-world systems than the batch-job model. In addition, our imperative language ap-
proximates the implementation of real-world interactive programs more closely than
abstract system models such as the π-calculus. This paper thereby contributes to under-
standing the security properties of programs written in languages with information flow
control, such as Jif [26] or Flow Caml [33], that support user input and output.

19

Acknowledgments

We thank Dan Grossman, Joseph Halpern, Gregory Lawler, Jed Liu, Andrew Myers,
Nathaniel Nystrom, Fred B. Schneider, Lantian Zheng, and the anonymous reviewers
for discussions, technical suggestions, and comments on this paper.

A Proof Sketch for Theorem 2

For the proof of Theorem 2, we treat the proof for nonprobabilistic noninterference—
that is, the proof of parts (a) and (b)—separately from the proof of probabilistic nonin-
terference. This is technically unnecessary, because the necessary lemmas for the prob-
abilistic proof are generalizations of the lemmas for the nonprobabilistic proof. We take
this approach so that we can prove the nonprobabilistic lemmas, which are simpler to
understand, without the overhead of probability trees and probability distributions. The
nonprobabilistic lemmas are proven in Section A.1, whereas the probabilistic lemmas
and Theorem 2 are proven in Section A.2.

All of the results in this section assume the existence of a single variable typing Γ.
When convenient, we avoid specifying Γ and assume that the typing is given.

We heavily overload the symbol ∼L to represent low equivalence relations. We
write σ ∼L σ′ to denote that states σ and σ′ are low-equivalent with respect to Γ, that
is, if σ(x) = σ′(x) whenever Γ(x) = L. Refiners ψ,ψ′ ∈ Ref are low-equivalent,
written ψ ∼L ψ′, if ψ(L) = ψ′(L). Similarly, joint strategies ω, ω′ ∈ Strat are low-
equivalent, written ω ∼L ω′ if ω(L) = ω′(L). Traces t and t′ are low-equivalent,
written t ∼L t′, if t�L = t′ �L.

The low-equivalence relation on well-typed commands, denoted c ∼L c′, is defined
by the following rules:

(a) c ∼L c for all commands c;
(b) if Γ ` c1 : H cmd and Γ ` c2 : H cmd, then c1 ∼L c2;
(c) if Γ ` c1 : H cmd and Γ ` c2 : H cmd, then c1; c ∼L c2; c for all commands c;

and
(d) if Γ ` cH : H cmd, then cH ; c ∼L c and c ∼L cH ; c for all commands c.

Property 1. The relation ∼L is an equivalence relation on well-typed commands.

Proof. Reflexivity is immediate by rule (a), and symmetry follows because the rules
themselves are symmetric. Transitivity follows by a straightforward analysis of each
pair of rules. ut

Two configurations m = (c, σ, ψ, t, ω) and m′ = (c′, σ′, ψ′, t′, ω′) are low-equiva-
lent, written m ∼L m′, if c ∼L c′, σ ∼L σ′, ψ ∼L ψ′, t ∼L t′, and ω ∼L ω′.

A.1 Nonprobabilistic Proof Details

The following lemma, an analogue of the “Simple Security” lemma of [37], demon-
strates that low-typed expressions have the same values in low-equivalent states.

20

Lemma 1. If Γ ` e : L, then Γ(x) = L for every variable x appearing in e. In
particular, if Γ ` e : L and σ ∼L σ′, then σ(e) = σ′(e).

Proof. By induction on the structure of e. ut

The following lemma demonstrates that configurations with high-typed commands
take steps that preserve low-equivalence (in the sense that no low events are emitted and
the resulting configuration is low-equivalent to the initial configuration).

Lemma 2. If Γ ` c : H cmd, then for all σ, ψ, t, and ω, if

(c, σ, ψ, t, ω) −→ (c′, σ′, ψ′, t′, ω′),

then (c, σ, ψ, t, ω) ∼L (c′, σ′, ψ′, t′, ω′), and moreover Γ ` c′ : H cmd.

Proof. By induction on the derivation of (c, σ, ψ, t, ω) −→ (c′, σ′, ψ′, t′, ω′). ut

The following lemma demonstrates that if the first command in a sequence ter-
minates with some configuration, then the sequence eventually steps to an identical
configuration with skip replaced by the second command in the sequence.

Lemma 3. For all c0, c1, σ, σ′, ψ, ψ′, t, t′, ω, and ω′, if

(c0, σ, ψ, t, ω) −→∗ (skip, σ′, ψ′, t′, ω′),

then
(c0; c1, σ, ψ, t, ω) −→∗ (c1, σ′, ψ′, t′, ω′).

Proof. By induction on the length of the derivation of

(c0, σ, ψ, t, ω) −→∗ (skip, σ′, ψ′, t′, ω′),

using rule SEQ-1 for the base case and rule SEQ-2 for the inductive case. ut

The following lemma demonstrates that high-typed commands always terminate,
and that the resulting terminal configuration is low-equivalent to the initial configura-
tion.

Lemma 4. If Γ ` c : H cmd, then for any σ, ψ, t and ω there exists σ′, ψ′, t′ and ω′

such that
(c, σ, ψ, t, ω) −→∗ (skip, σ′, ψ′, t′, ω′),

and
(c, σ, ψ, t, ω) ∼L (skip, σ′, ψ′, t′, ω′).

Proof. Note that a high-typed command cannot contain a while-statement. The result
follows by structural induction on c, using Lemma 2 to demonstrate low equivalence
for the base cases. For sequences we appeal to Lemma 3. ut

The following lemma demonstrates that low-equivalent configurations with the same
command take steps that preserve low equivalence.

21

Lemma 5. For all c, σ1, σ2, ψ1, ψ2, t1, t2, ω1, ω2, and m1, if

(c, σ1, ψ1, t1, ω1) ∼L (c, σ2, ψ2, t2, ω2), and (c, σ1, ψ1, t1, ω1) −→ m1,

then there exists a configuration m2 such that

(c, σ2, ψ2, t2, ω2) −→ m2, and m1 ∼L m2.

Proof. By induction on the derivation (c, σ1, ψ1, t1, ω1) −→ m1, using Lemma 1 for
the rules ASSIGN, OUT, IF-1, and IF-2. ut

The main nonprobabilistic lemma demonstrates that the traces emitted by low-
equivalent configurations are low-equivalent.

Lemma 6. For all configurations m1, m2, and m′
1, if

m1 ∼L m2 and m1 −→∗ m′
1,

then there exists a configuration m′
2 such that

m2 −→∗ m′
2 and m′

1 ∼L m′
2.

Proof. By induction on the length of the derivation of m1 −→∗ m′
1. The base case is

trivial. Otherwise, write m1 = (c1, σ1, ψ1, t1, ω1) and m2 = (c2, σ2, ψ2, t2, ω2), and
consider the cases for c1 ∼L c2:

(a) If c1 = c2, then suppose that m1 −→ m′′
1 and m′′

1 −→∗ m′
1. By Lemma 5, there is

a state m′′
2 such that m2 −→ m′′

2 and m′′
1 ∼L m′′

2 . We can then apply the inductive
hypothesis.

(b) If c1 and c2 are both high-typed, suppose that m1 −→ m′′
1 and m′′

1 −→∗ m′
1. By

Lemma 2, m′′
1 is low equivalent to m2, and we can apply the inductive hypothesis.

(c) If c1 = cH1 ; c and c2 = cH2 ; c for some command c and high-typed commands
cH1 and cH2 , then consider the form of cH1 . If cH1 = skip, then m1 −→ m̂,
where m̂ = (c, σ1, ψ1, t1, ω1), and since (c, σ1, ψ1, t1, ω1) is low equivalent to
m2, we can apply the inductive hypothesis. Otherwise, by Lemma 2 and SEQ-2,
m1 −→ m′′

1 for some m′′
1 such that is low equivalent to m2, and we can apply the

inductive hypothesis.
(d) If c1 = cH1 ; c2, then consider the form of cH1 . If cH1 = skip, then m1 −→

(c2, σ1, ψ1, t1, ω1), and since (c2, σ1, ψ1, t1, ω1) is low equivalent to m2, we can
apply the inductive hypothesis. Otherwise, by Lemma 2 and SEQ-2, m1 −→ m′′

1

such that m′′
1 is low equivalent to m2, and we can apply the inductive hypothesis.

If c2 = cH2 ; c1, then by Lemma 4 and Lemma 3, there is a configuration m′′
2 =

(c1, σ′′2 , ψ
′′
2 , t

′′
2 , ω

′′
2) such that m2 −→∗ m′′

2 and m2 ∼L m′′
2 , and thus m1 ∼L m′′

2 .
Supposem1 −→ m′′

1 andm′′
1 −→∗ m′

1. Then by Lemma 5, there is a configuration
m′′′

2 such that m′′
2 −→ m′′′

2 such that m′′
1 ∼L m′′′

2 , and we can apply the inductive
hypothesis.

ut

The first two cases of Theorem 2 follow directly from this result.

22

A.2 Probabilistic Proof Details

We now generalize the results of the previous section to account for probabilistic pro-
grams. The structure of the proof is similar to the nonprobabilistic results.

Given a vertex v of a probability tree Tm, let Tv denote the subtree of Tm rooted
at v, and let Vv and Rv denote the sets of vertices and rays of Tv , respectively. We
denote the configuration with which v is labeled as cf (v), and we write v ∼L v′ if
cf (v) ∼L cf (v′).

Let a frontier set of a vertex v be a finite set of vertices S ⊆ Vv such that for every
ray r ∈ Rv there exists exactly one vertex from S on r. Given a frontier set S of v, we
call F = (v, S) a frontier. Note that {v} is a frontier set of v, and that given any frontier
F we can obtain a new frontier F ′ by replacing any vertex in the frontier set with all
of its descendants. Note also that a frontier set S partitions Rv into sets of rays that go
through particular vertices in S.

Define the depth of a frontier (v, S) to be the length of the longest path (that is, the
number of edges in the longest path) between v and vertices in S.

Because the vertices in a frontier F = (v, S) induce a partition on the sets of rays
going through v, the function π on vertices gives rise to a discrete probability measure
on sets of vertices on S, normalized by the value of π(v). More concretely, for any
vertex v′ in a frontier set S of v, let πv(v′) be the product of the probabilities on the
path from v to v′. We can now compare the distribution of low-equivalent configurations
in two different frontiers. Given a frontier F = (v, S) and a configuration m, let

[m]F , {v′ ∈ S | cf (v′) ∼L m}

be the subset of S whose configurations are low-equivalent to m. Define two frontiers
F = (v, S) and F ′ = (v′, S′) to be low-equivalent, denoted F ∼L F ′, if for any
configuration m we have ∑

v′′∈[m]F

πv(v′′) =
∑

v′′∈[m]F ′

πv′(v′′).

The following lemma, which generalizes Lemma 3, demonstrates that if the first
command in a sequence terminates in all execution paths, then the sequence eventually
steps, in all execution paths, to the second command, while preserving other aspects of
the original terminal configuration.

Lemma 7. If v is a vertex in a probability tree such that cf (v) = (c0; c1, σ, ψ, t, ω),
and F0 = (v0, S0) is a frontier such that

– cf (v0) = (c0, σ, ψ, t, ω),
– the subtree rooted at v0 is finite, and
– S0 consists of the root vertices of the subtree rooted at v0,

then there exists a frontier F = (v, S) and a one-to-one mapping g : S0 → S such that
if v′0 ∈ S0 and cf (v′0) = (skip, σ′, ψ′, t′, ω′), we have cf (g(v′0)) = (c1, σ′, ψ′, t′, ω′).

Proof. By induction on the depth of F0, using rules SEQ-1 and SEQ-2. ut

23

The following lemma, which generalizes Lemma 4, demonstrates that high-typed
commands terminate in all execution paths and that terminal configurations are low-
equivalent to the initial configuration.

Lemma 8. If v is a vertex in a probability tree such that cf (v) = (c, σ, ψ, t, ω) and
Γ ` c : H cmd, then the subtree rooted at v is finite and that for any leaf vertex v′ of
that subtree we have v′ ∼L v.

Proof. By structural induction on c, using Lemma 7 for sequences and Lemma 2 to
demonstrate low-equivalence for the base cases. ut

The following lemma, generalizing Lemma 5, demonstrates that low-equivalent ver-
tices have low-equivalent sets of children.

Lemma 9. If F1 = (v1, S1) and F2 = (v2, S2) are frontiers such that

– v1 ∼L v2,
– S1 and S2 are the sets of children of v1 and v2, and
– cf (v1) and cf (v2) share the same command c,

then F1 ∼L F2.

Proof. By structural induction on c, using Lemma 1 for the rules ASSIGN, OUT, IF-1,
and IF-2. ut

The following lemma is useful for the inductive cases of Lemma 11. It states that
we can combine frontiers of vertices in low-equivalent frontiers to obtain deeper low-
equivalent frontiers.

Lemma 10. If F1 = (v1, S1) and F2 = (v2, S2) are frontiers such that

– F1 ∼L F2;
– g1 is a mapping from S1 to frontier sets such that for any v ∈ S1, (v, g1(v)) is a

frontier;
– g2 is a mapping from S2 to frontier sets such that for any v ∈ S2, (v, g2(v)) is a

frontier; and
– for all v′1 ∈ S1 and v′2 ∈ S2 such that v′1 ∼L v′2, we have (v′1, g1(v

′
1)) ∼L

(v′2, g2(v
′
2));

then F ′1 = (v1,∪v∈S1g1(v)) and F ′2 = (v2,∪v∈S2g2(v)) are frontiers such that F ′1 ∼L

F ′2.

Proof. F ′1 and F ′2 are frontiers, which follows directly from the definition of a frontier
set. To demonstrate the low-equivalence of F ′1 and F ′2, we must establish that for all
configurations m we have ∑

v∈[m]F ′
1

πv1(v) =
∑

v∈[m]F ′
2

πv2(v).

24

Let M denote a set of class representatives (for the equivalence relation ∼L) of the
set of configurations with which the elements of S1 ∪ S2 are labeled. We have∑

v∈[m]F ′
1
πv1(v) =

∑
v′1∈F1

∑
v∈[m]g1(v′1)

πv1(v
′
1) · πv′1

(v)

=
∑

m′∈M
∑

v′1∈[m′]F1

∑
v∈[m]g1(v′1)

πv1(v
′
1) · πv′1

(v)

=
∑

m′∈M
∑

v′1∈[m′]F1
πv1(v

′
1) ·

∑
v∈[m]g1(v′1)

πv′1
(v).

However, by assumption, for any configuration m and for any v′1 ∈ S1 and v′2 ∈ S2

such that v′1 ∼L v′2, we have (v′1, g1(v
′
1)) ∼L (v′2, g2(v

′
2)), and thus∑

v∈[m]g1(v′1)

πv′1
(v) =

∑
v∈[m]g2(v′2)

πv′2
(v).

In fact, for any w ∈ S1 such that v′1 ∼L w, we also have∑
v∈[m]g1(v′1)

πv′1
(v) =

∑
v∈[m]g1(w)

πw(v).

Thus, this sum depends only on the low-equivalence class of v′1. We capture this by
defining s(m′,m) to be equal to this sum, resulting in the following equalities:

s(m′,m) =
∑

v∈[m]g1(v′1)
πv′1

(v) for any v′1 ∈ S1 such that v′1 ∼L m′

=
∑

v∈[m]g2(v′2)
πv′2

(v) for any v′2 ∈ S2 such that v′2 ∼L m′.

We therefore have∑
v∈[m]F ′

1
πv1(v) =

∑
m′∈M

∑
v′1∈[m′]F1

πv1(v
′
1) · s(m′,m)

=
∑

m′∈M s(m′,m) ·
∑

v′1∈[m′]F1
πv1(v

′
1)

=
∑

m′∈M s(m′,m) ·
∑

v′2∈[m′]F2
πv2(v

′
2) [as F1 ∼L F2]

=
∑

v∈[m]F ′
2
πv2(v), [similarly]

as desired. ut

We can now state the main lemma, which generalizes Lemma 6.

Lemma 11. If F1 = (v1, S1) is a frontier and v2 ∼L v1, then there exists a frontier set
S2 of v2 such that F1 ∼L (v2, S2).

Proof. By induction on the depth of F1. The base case is trivial, and cases (a)–(d)
are analogues of the cases in the nonprobabilistic proof. As before, write cf (v1) =
(c1, σ1, ψ1, t1, ω1) and cf (v2) = (c2, σ2, ψ2, t2, ω2), and consider the cases for c1 ∼L

c2:

(a) Suppose that c1 = c2. If S′1 and S′2 are the sets of children of v1 and v2, we have
(v1, S′1) ∼L (v2, S′2) by Lemma 9. The inductive hypothesis applies to v′1 ∈ S′1
(with appropriate frontier sets Sv′1

⊆ S1) and elements v′2 ∈ S′2 such that v′1 ∼L v′2,
and the result follows by Lemma 10.

25

(b) If c1 and c2 are both high-typed, the result follows by Lemma 2, the inductive
hypothesis applied to the children of v1, and Lemma 10.

(c) If c1 = cH1 ; c and c2 = cH2 ; c for some command c and high-typed commands
cH1 and cH2 , let S′1 be the set of children of v1. For each v′1 ∈ S′1 we have v′1 ∼L

v1 ∼L v2 (by SEQ-1 if cH1 is skip, or by Lemma 2 and SEQ-2 otherwise), and we
can therefore apply the inductive hypothesis. The result follows from Lemma 10.

(d) If c1 = cH1 ; c2, we can apply the inductive hypothesis using the same reasoning
used for case (c). Otherwise we have c2 = cH1 ; c1. Let S′1 be the set of children
of v1. By Lemma 7 and Lemma 8, there exists a frontier set S′2 of v2 such that for
every element v′2 ∈ S′2, v′2 is labeled with a configuration whose command is c1,
and v′2 ∼L v2 ∼L v1. Given any v′2 ∈ S′2, let Sv′2

be the set of children of v′2. By
Lemma 9 we have (v1, S′1) ∼L (v′2, Sv′2

), and the inductive hypothesis applies to
elements v′1 ∈ S′1 as in case (a). By Lemma 10 we can combine the frontiers of
the elements of Sv′2

to get a frontier Fv′2
= (v′2, Sv′2

) such that Fv′2
∼L F1. Let

S2 = ∪v′2∈S′2
Sv′2

. We have (v2, S2) ∼L F1 by Lemma 10.
ut

We are now ready to prove Theorem 2. We do so by establishing a connection
between µm(Em(t)), the probability that configuration m emits trace t, and the prob-
abilities of vertices of arbitrarily deep frontiers of Tm. Given a trace t and probability
tree Tm with root vertex vr and frontier (vr, S), define:

ES(t) , {r ∈ Rm | there exists a vertex v ∈ S on r and a trace t′

such that tr(v) extends t′ and t′ �L = t�L}.

The set ES(t) consists of those rays on which traces that are low-equivalent to t appear at
vertices that are ancestors of elements in S. Intuitively, µm(ES(t)) is an approximation
of µm(Em(t)).

Theorem 2 (Soundness). For any command c, if there exists a variable typing Γ and a
security type τ such that Γ ` c : τ cmd, then

(a) if c does not contain nondeterministic or probabilistic choice, then c satisfies non-
interference;

(b) if c does not contain probabilistic choice, then c satisfies noninterference under
refinement; and

(c) c satisfies probabilistic noninterference.

Proof. That c satisfies noninterference and noninterference under refinement follows
from Lemma 6. To demonstrate that c satisfies probabilistic noninterference, we must
show that, for all low-equivalent configurationsm andm′ and traces t, that µm(Em(t)) =
µm′(Em′(t)). We demonstrate that µm(Em(t)) ≤ µm′(Em′(t)); the reverse inequality
is symmetric. Suppose, by way of contradiction, that µm(Em(t)) > µm′(Em′(t)). We
demonstrate below that there exists a sequence of frontier sets {Si} of the root vertex vr

of Tm such that µm(ESi(t)) converges to µm(Em(t)). It follows there exists a frontier
set S of Tm such that µm(ES(t)) > µm′(Em′(t)). But by Lemma 11, there exists a fron-
tier F ′ = (v′r, S

′) of Tm′ such that F ′ ∼L (vr, S). Thus µm′(ES′(t)) = µm(ES(t)),
and µm′(ES′(t)) > µm′(Em′(t)). This is a contradiction, because ES′(t) ⊆ Em′(t).

26

We now exhibit a sequence of frontier sets {Si} such that µm(ESi
(t)) converges to

µm(Em(t)). Consider the sequence S0, S1, . . . , Si, . . . of frontier sets of vr that com-
prise all the vertices at depth i of Tm. We have Em(t) = ∪i≥0ESi(t), and for all i we
have ESi(t) ⊆ ESi+1(t). Convergence follows due to a standard result in probability
theory [2]. ut

References

1. Ana Almeida Matos, Gérard Boudol, and Ilaria Castellani. Typing noninterference for reac-
tive programs. In Proc. Workshop on Foundations of Computer Security, 2004.

2. Patrick Billingsley. Probability and Measure. Wiley-Interscience, 3rd edition, April 1995.
3. Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs and thread

systems. Lecture Notes in Computer Science, 281(1):109–130, 2002.
4. Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in information flow.

In Proc. 18th IEEE Computer Security Foundations Workshop, pages 31–45, June 2005.
5. Dorothy E. Denning. A lattice model of secure information flow. Comm. of the ACM,

19(5):236–243, 1976.
6. Riccardo Focardi and Roberto Gorrieri. Classification of security properties (Part I: Infor-

mation flow). In Foundations of Security Analysis and Design, pages 331–396. Springer,
2001.

7. Riccardo Focardi and Sabina Rossi. Information flow security in dynamic contexts. In Proc.
15th IEEE Computer Security Foundations Workshop, pages 307–319, 2002.

8. Riccardo Focardi, Sabina Rossi, and Andrei Sabelfeld. Bridging language-based and process
calculi security. In Proc. of Foundations of Software Science and Computation Structures
(FOSSACS’05), volume 3441 of LNCS, April 2005.

9. Cédric Fournet and Georges Gonthier. The Reflexive CHAM and the Join-Calculus. In Conf.
Record 23rd ACM Symposium on Principles of Programming Languages, pages 372–385,
1996.

10. Joseph A. Goguen and José Meseguer. Security policies and security models. In Proc. IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

11. James W. Gray III and Paul F. Syverson. A logical approach to multilevel security of proba-
bilistic systems. Distributed Computing, 11(2):73–90, 1998.

12. Joseph Y. Halpern. Reasoning About Uncertainty. MIT Press, Cambridge, Mass., 2003.
13. Joseph Y. Halpern and Kevin R. O’Neill. Secrecy in multiagent systems. In Proc. 15th IEEE

Computer Security Foundations Workshop, pages 32–46, 2002.
14. Joseph Y. Halpern and Kevin R. O’Neill. Secrecy in multiagent systems. Available at

http://arxiv.org/pdf/cs.CR/0307057, 2005.
15. Joseph Y. Halpern and Mark Tuttle. Knowledge, probability, and adversaries. Journal of the

ACM, 40(4):917–962, 1993.
16. Jifeng He, K. Seidel, and A. McIver. Probabilistic models for the guarded command lan-

guage. Science of Computer Programming, 28:171–192, 1997.
17. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
18. Sebastian Hunt and Dave Sands. On flow-sensitive security types. In Conf. Record 33rd

ACM Symposium on Principles of Programming Languages, 2006.
19. Heiko Mantel. A uniform framework for the formal specification and verification of infor-

mation flow security. PhD thesis, Universität des Saarlandes, 2003.
20. Heiko Mantel and Andrei Sabelfeld. A unifying approach to the security of distributed and

multi-threaded programs. Journal of Computer Security, 11(4):615–676, September 2003.

27

21. Daryl McCullough. Specifications for multi-level security and a hook-up property. In Proc.
IEEE Symposium on Security and Privacy, pages 161–166, 1987.

22. John McLean. Proving noninterference and functional correctness using traces. Journal of
Computer Security, 1(1):37–58, 1992.

23. John McLean. A general theory of composition for trace sets closed under selective inter-
leaving functions. In Proc. IEEE Symposium on Security and Privacy, pages 79–93, 1994.

24. R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer Science,
Volume 92. Springer-Verlag, Berlin/New York, 1980.

25. Robin Milner. Processes: A mathematical model of computing agents. In H. E. Rose and
J. C. Shepherdson, editors, Proceedings of the Logic Colloquium, Bristol, July 1973, pages
157–173, New York, 1975. American Elsevier Pub. Co.

26. Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and
Nathaniel Nystrom. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, 2001–2005.

27. A. W. Roscoe. CSP and determinism in security modeling. In Proc. IEEE Symposium on
Security and Privacy, 1995.

28. Peter Y. A. Ryan and Steve A. Schneider. Process algebra and non-interference. In Proc.
12th IEEE Computer Security Foundations Workshop, pages 214–227, 1999.

29. Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed pro-
grams. In Proceedings of the 9th International Static Analysis Symposium, volume 2477 of
LNCS, Madrid, Spain, September 2002. Springer-Verlag.

30. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

31. Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Proc. 13th IEEE Computer Security Foundations Workshop, pages 200–214. IEEE
Computer Society Press, July 2000.

32. Vincent Simonet. Fine-grained information flow analysis for a lambda-calculus with sum
types. In Proc. 15th IEEE Computer Security Foundations Workshop, pages 223–237, June
2002.

33. Vincent Simonet. The Flow Caml System: Documentation and user’s manual. Technical
Report 0282, Institut National de Recherche en Informatique et en Automatique (INRIA),
July 2003.

34. Geoffrey Smith. A new type system for secure information flow. In Proc. 14th IEEE Com-
puter Security Foundations Workshop, pages 115–125, 2001.

35. Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
Proc. 26th IEEE Symp. on Foundations of Computer Science, pages 327–338, 1985.

36. Dennis Volpano and Geoffrey Smith. Probabilistic noninterference in a concurrent language.
Journal of Computer Security, 7(2,3):231–253, November 1999.

37. Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167–187, 1996.

38. J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic systems. In
Proc. IEEE Symposium on Security and Privacy, pages 144–161, May 1990.

39. Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program
security. In Proc. 16th IEEE Computer Security Foundations Workshop, pages 29–43, Pacific
Grove, California, June 2003.

28

